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(i) True. This is a restatement of Corollary 1.59
(ii) False. Let a = 1,b=5and m = 4. Then (1+5)* = 6 = 1296 = 0 mod 4, and 1?+5% = 1+625 = 626 = 2 mod 4

(v) False. Using the fact that if @ = b mod m then a™ = b™ mod m, we can verify this with modulo 10:

a= 011234567138
mod10a?=[0|1[4[9]6][5[6]9][4]1

We can write 5263980007 = 526398000 - 10 + 7 <= 5263980007 = 7 mod 10, but 7 is not a remainder of a
square mod 10. Hence, 5263980007 is not a perfect square.

(vi) False. Suppose to the contrary that there exists an integer n such that n = 1 mod 100 and n = 4 mod 1000.
Then,
100ln—1 <= n—1=100-k < n=100-k + 1, for some k € Z and

1000jn—4 <= n—4=1000-k" <= n =1000-k'+4, for some k' € Z <= n = 100-k" +4 where ¥’ = 10-k’

Contradicting the Division Algorithm, since dividing n by 100 leaves two different remainder according to the
two previous equations. Therefore, there exists no such integer n.

Let m € Z*. Define m’ to be a number obtained by rearranging the digits of m. Is m — m’ is a multiple of 97.
Proof: Let d; denote the ith digit of m and d} the ith digit of m’. We can write both m and m’ in decimal notation:

m=dy, 10" +dp_y - 10"+ +dy - 10> +dy - 10" +dp - 10°
m' =d, 10" +d,_, - 10"+ 4+ dy- 10> + dy - 10" + df, - 10°
Subtracting m’ from m:
m—m' =dp 10" +dp_1-10" "+ 4dy-10*+dy - 10" +dp-10° —d, - 10" —d,_,-10" "' —-.. —d}-10% —d} - 10" —dj, - 10°
In the very first homework of the semester we prove that 10" =9-p+1 <= 10" =1 mod 9, for any n. Also, since
d; = d}; for some j, we can group the same digits from m and m’ to obtain:
m—m'Ezn:di(l—l) m0d9:idi-0:i0:0:>m—m’EOmon
i=1 i=1 i=1
Which means that 9jm —m’ —0 <= 9m —m' < m —m/ =9k for some k € Z. Q.E.D.
Let n be a positive integer and n = dj - 105 +dp_1-10F 1 4. .. +dy- 102+ dy - 101 + dp - 10° be n’s decimal notation.
(=) Suppose that 11|n <= n = 11 - p for some p € Z. By definition
11-p=dp-10* +dp_1-10F" 4+ 4+ dy-10% + dy - 10* + dp - 10°
Since the powers of 10 are congruent to —1 or 1 mod 11 alternatively, we can write (also, rearranging terms):
d -10% +dp_y - 10" - 4 dy - 102 4 dy - 10 4 dp - 10° = do(1) + dy (=1) + - - - + (—1)*d), mod 11
Hence, 11-p=dy —dy + - + (=1)¥dj, mod 11. Call S =dy —dy + - - - + (—1)*dj. Then:
111S—-11-p < S—1l-p=1l-gqforsome g€Z < S=11-q+11-p=11(qg+p) < 11|S
(<) Suppose that 11]S. Then
11|S <= S=11p < 1l-p=do—di++(—1)Fdy = dp-10*+dj_1-10* "1 - 4dy-10%+d; - 10" +dp-10° mod 11 = n

Hence, 11-p=nmod 11 <= 11|11 p—n <= 1l-p—n=11-q¢q < n=11-p—11-gq=11(p—q) < 11in
Q.E.D.
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Prove that there are no integers x,y and z such that z? + 32 + 22 = 999.

Proof. If a is a perfect square, then, a®> = 0,1, or 4 mod 8. Since 999 = 8- 124 + 7 = 999 = 7 mod 8. By
proposition 1.60 (i), we have that:
z2=0,1, or 4 mod 8

y?>=0,1, or 4 mod 8
22=0,1, or 4 mod 8

Then the sum is going to be preserve moulo 8. This means that:

224+92+22 = 0mod8 <= (04+0+0),(4+4+0),(4+0+4),(0+4+4)
= 1mod8 <= (1+0+0),(0+1+0),(0+0+1)
= 2mod8 <= (1+1+0),(0+1+1),(14+0+1)
= 3mod8 < (1+1+1)
= 4mod8 < (44+0+0),(0+4+0),(0+0+4),(4+4+4)
= 5mod8 < (1+4+0),(0+1+4),(1+0+4),4+1+0),(0+4+1),4+1+0)
= 6mod8 < (4+1+1),(1+4+1),(1+1+4)
= 9mod8 <= (4+4+1),d+1+4),(1+4+4)

All 3% = 27 possibilities are represented above but none of these are = 7 mod 8. Hence, there exists no integers z, v, z
such that 22 + y? + 2% = 999.

Prove that there is no perfect square whose two last digits are 35.

A first proof: if @ = 5 mod 10 then a? = 5 mod 10.In particular, this means that the only way a square a? ends in
5 is that a also ends in 5. Let a = 10 - k + 5. Square it: a? = 100- k2 + 100 - k + 25 = 100(k? + k) + 25 <= a> =25
mod 100. Hence, the last two digits of a? are 25 and never 35.

A second proof: the following are all the equivalence classes mod 100 for i, where i = 0,1,...,100 [1, 4, 9, 16, 25,
36, 49, 64, 81, 0, 21, 44, 69, 96, 25, 56, 89, 24,61, 0, 41, 84, 29, 76, 25, 76, 29, 84, 41, 0, 61, 24, 89, 56, 25, 96, 69, 44,
21, 0, 81, 64, 49, 36, 25, 16, 9,4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 21, 44, 69, 96, 25, 56, 89, 24, 61, 0, 41, 84, 29,
76, 25, 76, 29, 84, 41, 0, 61, 24, 89, 56, 25, 96, 69, 44, 21, 0, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0]

None of these is 35, hence there is no square whose two last digits are 35.

If z is an odd number not divisible by 3, prove that 22 = 1 mod 24.

Proof: let € Z be an odd number not divisible by 3. Then, there exists a unique r € {0,1,...,23} such that
x=rmod24,ie,x—r=24-k <= x =24 -k+r for some k € Z. Note that since 24 is divisible by 2, 2|x <= 2|r,
and since 24 is divisible by 3, 3|x <= 3|r. Also, if x = r mod 24 then 22 = r? mod 24, so by all this, it suffices to
look at odd r not divisible by 3 in {0,1,...,23}, and look at > mod 24 for such r. The following table summarizes
the data:

z=|1 51 7 | 11 13 17 | 19 | 23
x2=|11]25]49 [ 121 | 169 | 289 | 361 | 529
22 = mod 24 | 1 1] 1 1 1 1 1 1

(i) Let S(n): (a+0b)" = a™ + b™ mod 2 for all a,b and for all n > 1.
Proof that S(n) is true for all n > 1, by 2nd form of induction.
Base Cases: n=1= (a+b)' =a+b= S(1) is true. Also,n=2= (a+b)?>=a +2ab—|—b2 a? + b? mod
2, since 2|2ab. Finally, n = 3 = (a +b)® = a® + b3 + 3ab® + 3a?b = a® + b® + 3ab(b + a) = a® + b mod 2, by
analyzing parity of the term 3ab(b + a), we find that is its always the case that 3ab(b + a) = 0 mod 2 (See (*))
Inductive Step: Assume S(k) is true for k¥ < n. Then:

(a+b)" = (a+b)(a+b)! Exponent rule
= (a+b)(a™ 1+ ) mod 2 Inductive Hypothesis
= a"+ab" P 4a" b+ " Distributing
= (a"+b") +ab(a” 2 +b""2) Grouping
= (a"+b") +abla+b)" 2 IH
= a"+b" mod 2 By analyzing each case as follow (*):

(*) If a is even and b is odd (or vice versa), then a-b = 0 mod 2. If both a and b are even OR both a and b are
odd, then ab(a + b)"~2 = ab(a + b)(a + b)"~3 = 0 mod 2 since a + b is even. Q.E.D

(ii) Let @ = 1 and b = 1. Then (1+1)2> =22 =4=1mod 3. But 12 +12 =1+ 1 =2 = 2 mod 3. Hence,
(a+b)? # a®+b? mod 3



